
PHYSICAL REVIEW E JUNE 1998VOLUME 57, NUMBER 6
Interaction of ballistic particles with irregular pore walls, Knudsen diffusion,
and catalytic efficiency

S. B. Santra and B. Sapoval
Laboratoire de Physique de la Matie`re Condense´e, Ecole Polytechnique, CNRS,* 91128 Palaiseau Ce´dex, France

~Received 1 December 1997!

The statistical behavior of ballistic trajectories in irregular two-dimensional systems is studied numerically.
The geometrical irregularity is modeled by specific prefractal shapes. Many statistical distributions arising
from these trajectories are found to obey power laws of the Le´vy type with an exponent of order22. This is
the case for the probability distribution of the collision numbers, collision frequencies, trajectory lengths, and
free paths. The results are applied to several physical systems in which these statistics govern the physical
properties. The global absorption of light by irregular, partially absorbing surfaces is found to be weakly
dependent on the geometrical irregularity. In contrast, the mean interaction of a gas with an irregular surface
increases strongly with the irregularity of the surface. Catalytic efficiency is also found to increase strongly
with irregularity. However, surface irregularity has only weak effects on the macroscopic Knudsen diffusion.
These conclusions are not modified when the partially random character of the interaction on the pore wall is
taken into account.@S1063-651X~98!06706-3#

PACS number~s!: 47.55.Mh, 05.60.1w, 82.65.Jv
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INTRODUCTION

Ballistic trajectories are representative of several phys
phenomena. They correspond to the path of light rays
reflecting irregular structures when diffraction phenome
are neglected. Ballistic trajectories also correspond to
path of atoms or molecules in confined systems or vesse
sufficiently low pressure. This is known as the Knudsen d
fusion regime@1#. It determines the speed of pumping und
so-called molecular or high vacuum@2#. The interaction of
atoms or molecules with irregular surfaces plays a major
in heterogeneous catalysis@3,4# where porous catalysts hav
often very irregular surfaces down to the molecular sca
Due to the geometrical irregularity, the small scale structu
of the catalyst may confine reactants and increase the in
action with the surface. Recent study of xenon nuclear m
netic resonance~Xe NMR! to probe porous structures ha
drawn attention to the surface interactions of rare gas at
with solid surfaces and to their dynamics@5#. Concerning
light ray trajectories, one can consider whether an irregu
structure could ‘‘trap’’ light, opening the possibility to buil
an ‘‘open’’ blackbody. We address here the question: D
the surface geometrical irregularity play a role in these p
nomena and why?

The emergence of the concept of fractal geometry
provided an efficient tool to model the influence of stro
geometrical irregularity on various physical or chemical p
cesses@6,7#. In the field of heterogeneous catalysis, the p
neering work of Avnir and co-workers@8,9# on the possible
role of fractals in catalysis has triggered several studies
this direction@10#. A frequent and important physical situa
tion occurs when the reactant pressure or the pore siz
such that the reacting particles collide with the pore wa
before particle-particle collisions occur. This is the Knuds

*Unité de recherche associe´e du C.N.R.S. No. 1254.
571063-651X/98/57~6!/6888~9!/$15.00
al
in
a
e
at
-
r

le

.
s
r-

g-

s

r

s
-

s

-
-

in

is
s
n

diffusion regime, where the particle paths are limited by t
catalyst geometry@11#.

This paper presents a numerical study of ballistic traj
tories in physical or prefractal systems. By this, we me
systems of finite size~or diameter! in which the smaller fea-
ture size, the smaller cutoff, is finite. It is found that most
the quantities of interest here follow power law statistic
distribution, and averages do not behave as one would g
erally guess intuitively@12#. For instance, the number of co
lisions, or the collision frequencies, are found to obey Le´vy
statistics, a fact already known for specular reflections
smooth pores. This is verified for both specular and rand
collisions on the irregular pore walls. This last property is
consequence of the partially chaotic character of the tra
tories.

These power law probability distributions, for which th
mean value is dominated by the so-called rare events, lea
specific unusual physical properties for each type of phys
phenomenon that is considered. For example, it will
shown that the fraction of light that is reflected by such
structure is not equal to the reflection coefficient at ea
reflection elevated to a power equal to the mean numbe
collisions. In the same way, the mean collision frequency
very different from the ratio of the mean collision number
the mean duration of a trajectory.

Since Knudsen’s original work@1# on molecular diffu-
sion, several studies have been devoted to the computatio
the macroscopic diffusivity and its possible dependence
geometry@13–21#. These works show that the macroscop
diffusion coefficient depends on specific averages of
paths between collisions. In most of these studies, the rou
ness of the surface has been ignored. On the other hand
known, at least empirically, that the geometrical structure
a porous catalyst may have an important influence on
catalytic efficiency@3#.

The general scope of this study encompasses the sta
cal properties of ballistic trajectories in a model irregu
structure and applications of these probabilistic results to
6888 © 1998 The American Physical Society
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57 6889INTERACTION OF BALLISTIC PARTICLES WITH . . .
ferent simplified physical problems.

NUMERICAL METHOD

In our computations, only point trajectories are studi
Atoms are taken to be point mass particles and light be
are taken to have a very narrow diameter as compared to
size of the structural features. The ballistic trajectories
studied in prefractal pores built from the generator of a Ko
curve of fractal dimensionD f53/2. The first (n51) and the
second (n52) pore generations are shown in Fig. 1. T
‘‘degree of irregularity’’ of the pore at any generation can
simply characterized by the ratioS of the perimeter length
Lp,n to Lp,0 , the perimeter length of a smooth pore@22#. For
our prefractal shapes,S52n. It varies from S51 for the
smooth pore to infinity for a mathematical fractal withn
→`. In the ordinary language of the studies of porous s
tems, the so-called specific surface of the porous catal
~measured for instance in m2/g! is proportional toSLp,0 .

A source of 216 equally spaced particles~or rays! is fixed
at the top of the pore. The smooth pore width or diameteW
is chosen equal to 64 computer units and the pore de
equal to 128 computer units. The small feature size is eq
to 422n. The initial incidence angle is randomly chosen fro
a uniform distribution of angles between 2° and 178°.
particle trajectory is described by the successive collisions
point of collision is determined by solving the linear equ
tions of the particle trajectory, taking into account the e
ments of the prefractal surface. For purely specular refl
tion, the reflection angle is equal to the angle of incidence

FIG. 1. Schematic representation of the first~n51! and second
~n52! generations of the prefractal pore. The generator is show
the top. The pore depth~128! is twice the width or diameterW564,
and the length of the smallest slit atn51 is equal to 4. These value
determine the computer unit length. The dotted line represents
source. Two trajectories generated by the computer code
specular reflections are shown. The pore aspect ratio is kept
stant.
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that case, in our geometry, the reflection angle isnot calcu-
lated from numerical computation of trigonometric fun
tions, and the necessary reflections do not introduce num
cal errors due to truncation of angle computations. This is
reason why this particular geometry, with segments para
to the x and y axes, has been chosen. The only truncat
errors come from the solution of the linear equations.

Still, because of the existence of these errors, there co
appear in our calculations, besides the normal ray splitt
between close trajectories hitting salient corners, trajecto
that may be modified by a ‘‘spurious’’ splitting due to num
ber truncation. To avoid spurious beam splitting, we cal
late the cumulative error on the point of collision due to t
numerical precision of the computer. If this error becom
greater than the distance between the point of collision
the nearest corner, we eliminate that trajectory. Th
‘‘eliminated’’ trajectories are very few. Examples of specul
trajectories are shown in Fig. 1.

The geometry that is used here is purely determinis
and it is not obvious whether our computation can descr
real systems. For this reason, we have also computed tra
tories when the reflection on the walls is not purely specu
but possesses a partial random character. In the case of
reflection, this may take into account a roughness of the
dividual elements building the geometrical structure. F
particle-wall collision it is known that, due to the detaile
nature of the microscopic interaction of an atom or a m
ecule with a surface, the real collision process is a comp
phenomenon@23#. When the particle hits the surface, it ma
stay adsorbed for some time and then may desorb, exch
ing momentum with the pore wall. For this reason, the p
ticle reflection is nonspecular and presents a random cha
ter that may depend on the nature and temperature of
pore wall@23#. The random character of the trajectories m
also come from the microroughness of the pore wall. In or
to mimic the partial random character of each collision, t
angle of reflectionu r is related to the angle of incidenceu i
by

u r5u i1du, ~1!

where du is a random angle distributed uniformly over
range 6G. This range describes qualitatively the rando
character of the collisions.

The phenomena have been studied up to the fourth
fractal generation (n54) of the pore geometry. The random
ness parameterG is varied from 0° for specular reflection t
10° in steps of 2° for each generation. The various trajec
ries are indexed by the labeln. For a trajectoryn, we mea-
sure the successive free path lengthsl n, j between collisions,
the total trajectory lengthLn5S j l n, j , and we count the tota
number of collisionsNn before the exit of the particle. In the
following, ^ & indicates the average over the different traje
tories n. These data are discussed and applied to differ
physical situations.

COLLISION NUMBER, CHAOTIC ASPECTS

The average collision number,^Nn&, is given as a func-
tion of the randomness parameterG for different generations
in Fig. 2. First and foremost, the number of collisions
found essentially independent of the randomness param
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6890 57S. B. SANTRA AND B. SAPOVAL
G. Second, the average collision number increases with
irregularity.

The quasi-independence on the collision randomnes
due to the irregularity in the geometry that we consid
From the point of view of chaotic systems, this geometry c
be considered as giving rise to the strong sensitivity to ini
conditions, which is characteristic of deterministic cha
This is due to the existence of salient zones or angles in
structure. For example, two close trajectories may hit t
different sides of a salient corner and will have very differe
future paths. This is shown schematically in Fig. 3.

From the point of view of the study of dynamical system
our pores belong to the category of pseudointegrable
liards in the sense of Richens and Berry@24#. By going from
one prefractal generation to the next, more and more sa
corners are created, increasing the chaotic aspect of the
tem. It is, however, interesting to note that the statistics
the collision number are approximately the same for spec
and partially random reflection. The collision number d
pends slightly onG, but the main effect is already obtaine
for small values ofG. The weak effect of the randomness o
the collision number has already been observed in a diffe
geometry@25#.

FIG. 2. Average number of collisionŝNn& vs the randomness
parameterG for different generations. Circles:n50 ~smooth sur-
face!; squares:n51; diamonds:n52; up triangles:n53; and down
triangles:n54.

FIG. 3. Schematic illustration of the deviation of a trajecto
due to a small deviationdu from specular reflection.
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This is explained schematically in Fig. 3. In the succe
sive collisions process, the random angles do not cumula
a linear way. The figure indicates qualitatively why a sm
deviation in a particular reflection can trigger a strong mo
fication of the trajectory due to the presence of salient ang
in the geometry. The deviationdx in the collision position
due to the changedu in the reflection angle can be estimate
in the situation of Fig. 3. The deviationdx along the pore
axis is of order

dx'du l n, j /cosu i , ~2!

where l n, j is the path length between collisionsj and j 11.
The path lengthl n, j is in this case of the order of the por
diameter~64 in our units! and the value of cosui can be
taken of order 1/2. The changedu then introduces a deviation
dx;128du, which can be greater than the smallest slit leng
~4 units for the first generation! of the pore. If the deviation
is greater than the slit length, it will trigger a 180° change
the trajectory direction at the next collision. This effect
more drastic for higher generations. It explains why the
sults are essentially insensitive to large randomness. An
lustration of the sensitivity of a particular trajectory on
small randomness in the reflection angle is shown on Fig
One should note that in the mathematical limit of fractali
that is when the smallest feature size goes to zero, any
close trajectories explode at the first collision.

The second result of importance is the increase of
collision number̂ Nn& with the irregularity. It is found to be
roughly proportional toLp,n , the perimeter length of the
pore. This is true from one generation to the next, but it
also true for a given generation if one changes the glo
aspect ratio. This has been verified by changing the dept
the pore for the first generation. The increase of the collis
number with irregularity suggests that an irregular surfa
submitted to light will be more absorbing since energy
absorbed at each reflection. This is discussed below.

NATURE OF THE COLLISION STATISTICS: THE
QUESTION OF A HYPOTHETIC ‘‘OPEN’’ BLACKBODY

A blackbody is defined as an ideal body that allowsall the
incident radiation to pass into it~no reflected energy! and

FIG. 4. Illustration of the ‘‘chaotic’’ behavior of a trajectory du
to the introduction of a small randomness~G52°! in the collision
angle. The figure shows the sensitivity of a given trajectory to c
lision randomness.
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57 6891INTERACTION OF BALLISTIC PARTICLES WITH . . .
absorbs internallyall the incident radiation~no transmitted
energy! @26,27#. Physically it is built as a closed cavity wit
a small hole such that any light ray that enters the cavit
reflected a sufficient number of times to be totally absorb
It is known that the roughness of a surface can have p
found effects on the radiative properties and will indeed
come a controlling factor when the roughness is large
comparison with the wavelength of the radiation being c
sidered@27#.

We address here the following question: suppose ligh
reflected by the prefractal irregular surface in such a way
light rays undergo many reflections before being finally
flected from the system. One could guess intuitively th
because of the irregular structure of the reflecting geom
shown in Fig. 1, the number of reflections will be increas
increasing the system absorbing power. If this were true,
system would behave as an ‘‘open’’ blackbody, which cou
have practical applications. If the reflection coefficientr is
supposed for simplicity to be isotropic, a rough estimation
the effective absorption would be

Aest512r ^N&, ~3!

where^N& is the mean number of collisions.
One of our main results is that this estimate is gros

wrong. Indeed, the fraction of energy really absorbed
given by

A512~1/Ntr!(
n

r Nn, ~4!

whereNtr is the total number of trajectories that have be
computed.

The result of the calculation of expressions~3! and~4! is
given in Fig. 5. A strong discrepancy between the two val
is observed. This shows that the intuitive guess expresse
Eq. ~3! is wrong. Indeed, this particular geometry increas
the absorbing power, but not to the extent that is gues
from Eq. ~3!. The effect is only partial and does not, for th
particular geometry, justify the idea of an ‘‘open’’ black
body.

FIG. 5. Computed absorption coefficient for a surface reflect
coefficient r 50.9. The circles represent an absorption estima
from the average collision numbers using Eq.~3!, and the squares
represent the effective absorption computed using Eq.~4!.
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The reason for this discrepancy lies in the particular s
tistics of the number of reflections. Although it is true th
the meannumber of collisions is strongly increased by th
irregularity, this statistical mean is dominated by a few ra
that see a very large number of reflections. In other wor
most of the light rays see only a moderate increase in
number of reflections, and consequently, the effect of
irregularity on the global absorption is weak.

The knowledge of the probability distribution of the re
flection number helps one to understand this behavior.
probability P(N) to haveN collisions is shown in Fig. 6.
The distribution ofN appears to be essentially independe
of n andG. Secondly, the tail of the distribution is a powe
law with an exponent21.98, approximately equal to22.
This is a Lévy-type distribution@12#, which has in principle
no second moment in the limitN→`. In the same limit, the
first moment of the distribution

^Nn&5E NP~N!dN ~5!

diverges logarithmically. This means that the majority of t
rays has a small number of reflections, but the average n
ber of reflections is dominated by the few rays that unde
a large number of collisions. In such a case, the usual a
metic average is not representative of the phenomenon.

One should recall that the irregularity is not the cause
a Lévy-type power law@17#. For example, it is easy to show
that the probabilityP(N) of the collision number for specu
lar reflections in a smooth pore~n50! is a power law of
exponent22. In this case the number of collisionsN~u! for
an angle of incidenceu is given byN(u)5C/tan(u) where
C'2Lp,0 /W. The factor 2 comes from the fact that our po
is closed at the bottom. For specular reflections this
equivalent to an open pore of double length. Foru uniformly
distributed between 0 andp, this leads to P(N)
5p21udu/dNu5p21C/(C21N2)}N22 for N@C. This is
why there is already a large difference between the glo
absorption coefficients calculated from Eqs.~3! and ~4! for
n50.

n
d

FIG. 6. Probability distributionP(N) of the collision numberN.
The P(N) values for several systems are shown. Circles are
n53 andG50°; squares are forn54 andG50°; and triangles are
for n54 andG52°.
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6892 57S. B. SANTRA AND B. SAPOVAL
The median value of the collision number, which me
sures the number of reflections of the majority of the rays
of more use here. It is found of order 4 to 8 for our geo
etries. If one uses the median value in Eq.~3!, the agreemen
is much better.

One should note that, from the data in Fig. 6, it seems
for specular reflection, the maximum number of collisions
larger than in the case of partial randomness in the collis
process. This may be due to a geometrical resonance
could be blurred by the random character of the collisio
Ascertaining this fact would require extremely large simu
tions, which are beyond the scope of this paper.

It should also be noted that the results on the collis
number and distribution cannot be extended from two
three-dimensional trajectories. The number of collisions
increased by going to three dimensions but the role o
geometrical irregularity is unknown. The possibility of a re
open blackbody in three dimensions remains unanswere

KNUDSEN DIFFUSIVITY

To calculate the macroscopic diffusivityD, we use the
expression given by Derjaguin@12# for a pore network in
three dimensions

D5~c/6^l&!K ln,1• ln,112 (
j 52→`

ln,1• ln, j L , ~6!

wherec is the average velocity and̂l& the usual arithmetic
average of the free path between collisionsu ln, j u. Assuming
that the consecutive paths are mutually independent, D
jaguin’s formula simplifies to

D5~c/4!^l2&/^l& ~7!

in two dimensions. Herêl2& is the average of the square
the individual free pathsu ln,i u2 or mean square displacemen
There exists then in this problem an ‘‘equivalent diffusi
path’’ defined byLD5^l2&/^l& such thatD5cLD/4. The
dependence of̂l& and LD on the irregularityS is given in
Fig. 7.

FIG. 7. Knudsen diffusivity: dependence of^l& ~circles! andLD

~squares! on the irregularity~computer units!. The diffusivity, pro-
portional to LD , is found to be nearly independent of the po
irregularity.
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The result is striking: although the ordinary mean fr
path^l& decreases withS and seems to saturate, the diffusi
ity proportional toLD5^l2&/^l&, is essentially independen
of the irregularity. The lengthLD is found of the order of the
pore diameter, here equal to 64, independently of the co
sion randomness and the irregularity. To understand this f
it is useful to consider the probability distributionP(l) of
the individual free paths of lengthl, which is shown in Fig.
8. The first observation is that the distribution correspon
approximately to Le´vy flights with an upper cutoff of the
order of the pore size. Secondly, the relative number of sh
free paths increases enormously when the irregularity is
creased. This is to be contrasted with the case of the sm
pore. In this casel5W/cos(u) and, asP(l)dl5p21du,
one can write

P~l!5p21~W/l2!~12W2/l2!21/2 ~8!

of order p21(W/l2) for l@W. The existence of a Le´vy
distribution for paths much smaller than the pore width is
specific consequence of the pore irregularity.

These values, however, do not contribute significantly
the averageŝl& and ^l2&. One can write

^l&5E lP~l!dl, ~9!

^l2&5E l2P~l!dl. ~10!

The integrands of these integrals are shown in Fig. 9. I
clear that the integrals~9! and~10! take their values for val-
ues ofl of the order of the pore width. It can be seen in F
8 that this is also true for the next higher generation. T
explains why the Knudsen diffusivity is only weakly mod
fied in our structures. One should note that our structures
smooth on large scales. They represent a surface irregul
in which the largest irregular feature is kept smaller than
pore diameter. This is why our results differ from those o
tained by Coppens for structures irregular at all scales@21#.

FIG. 8. Probability distributionP(l) of the individual mean
free pathsl ~computer units! for generationsn51 ~circles! and
n52, ~squares!. The relative number of small paths increases ra
idly with the irregularity. The hump in the distribution correspon
to path lengths of the order of the pore diameter, here 64.
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57 6893INTERACTION OF BALLISTIC PARTICLES WITH . . .
MEAN INTERACTION BETWEEN PARTICLES
AND IRREGULAR PORE WALLS

We address now the following question: suppose that
consider a gaseous system at sufficiently low pressure
collisions between particles to be negligible as compare
collisions with the pore walls. Suppose that the particles,
instance xenon atoms, are absorbed at each collision f
short durationt. During this time the nuclear magnetic res
nance of the isotope129Xe ~spin 1/2! is submitted to a smal
shift in frequency@5,28,29#. What is the average interaction
or average NMR shift? This shiftDv will be proportional to
the fraction of the time during which the nuclei are in inte
action with the surface or simply to the frequency of t
collisions, if the residence time is short enough. We assu
that we are in this situation.

To compute the mean interaction, we need to consid
steady state in which the pressure is constant. If all the
jectories are initiated simultaneously at the entrance of
pore, the simple average over the trajectories does not re
sent a system at constant pressure, because the durati
the various trajectories is different. Some particles are
flected out of the system very quickly, while others spen
longer time in the pore. In order to mimic a constant pr
sure, we need to replace the particles as soon as they l
the system. A trajectoryn of duration Tn is then renewed
1/Tn times during the unit time, and the number of collisio
per unit time is equal toFn5Nn /Tn . To see the effect of the
randomness and the irregularity on the average interactio
constant pressure, one has to estimate the average of t
frequencies over the various trajectories. This is a way
restitute an ensemble average from our numerical result
the statistics of the trajectories. One needs to measure
total timeTn spent by the trajectoryn in the pore. This time
can be calculated from the trajectory lengthLn , since Tn
5Ln /c, wherec is the average velocity of the particle. Th
measured dependence of the average trajectory length^Ln&
on S andG is given in Fig. 10. It is found that the averag
trajectory length is of the order of a few pore depths, alm
independently ofG and n. One should, however, note tha

FIG. 9. Distribution of the integrandslP(l) ~squares! and
l2P(l) ~circles! in Eq. ~9! and ~10! for a pore of the first genera
tion. Lengths are expressed in computer units defined in Fig. 1.
observes that the integrals of these functions take their main co
butions from the same values of the free paths, which are of
order of the pore diameter.
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these lengths are extremely dispersed, as indicated by
11, which gives the probability distribution of the lengths,
durations, of the different trajectories. Note that in the ca
of a smooth pore there exists no trajectory of length sma
thanLp,0 here equal to 256. The existence of trajectories
small length or durations is then a specific consequenc
the geometrical irregularity.

Since the average collision number increases with the
regularity with nearly constant average duration, the aver
collision frequency should also increase. The collision f
quencyFn5Nn /Tn is directly related to the arithmetic ave
age ln of the free paths along the trajectoryn, since by
definition, ln5Ln /Nn5cTn /Nn . The average frequency i
then proportional to the inverse of this mean free path

^Fn&5^Nn /Tn&5c^1/ln&. ~11!

The mean interaction is then related to theharmonic meanof
the arithmetic mean free pathalong the n trajectory. The
simulation results are given in Fig. 12. They indicate that
average collision frequency increases rapidly withS, the ir-

ne
ri-
e

FIG. 10. Dependence of the average length of the trajecto
^Ln& on G for different generations~computer units!. Same symbols
as in Fig. 2. The lengtĥLn& also measures the average trajecto
duration^Tn& if the velocity is equal to 1.

FIG. 11. Probability distributionP(L) of the total lengthsL or
durations of the trajectories for specular reflections~computer
units!. Different symbols correspond to the different generations
the pore: circles forn51, triangles forn52, and boxes forn53.
The tail of the distribution is of the Le´vy type.
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6894 57S. B. SANTRA AND B. SAPOVAL
regularity of the pore. One should also note that the aver
^Nn /Tn& of the ratioNn /Tn is much larger than the ratio o
the averageŝNn&/^Tn&.

To understand why the irregularity plays such a role, o
has to discuss the probability distributionP(F) of the colli-
sion frequencies. It is shown in Fig. 13. It is also a Le´vy
distribution of exponent of order22. But, asln5Ln /Nn
5cTn /Nn5c/Fn , if one knowsP(F) one can retrieve the
probability distribution of ln by the relation P(F)
5P(ln)udln /dFu. Then asP(F);F22,

P~ln!;F22udln /dFu;ln
2ln

22;const. ~12!

The distribution ~over the different trajectories! of the
arithmetic mean free pathln should then be approximatel
uniform. This is an unexpected result: there exists also
large dispersion of thearithmetic mean free path along
trajectory. The statistics of the lengthsln , obtained directly
from the simulations, are shown in Fig. 14. The approxim

FIG. 12. Dependence of the average interaction or average
lision frequency^Fn& on the irregularityS. Note that the average
frequency is very different from the ratio of the averag
^Nn&/^Tn&.

FIG. 13. Probability distributionP(F) of the collision frequency
F. Different symbols correspond to the different generations of
pore: circles forn51, triangles forn52, and squares forn53.
Those distributions are obtained for specular reflections and
found to be of the Le´vy type.
ge

e

a

-

tion P(ln)'constant is indeed verified for all the small va
ues ofln . The mean frequencŷFn& is now given by

^Fn&5E FP~F !dF5cE ~1/ln!P~ln!dln . ~13!

As P(ln) is essentially independent ofln , the value of
this integral is dominated by thesmall values of mean free
path ln , as shown by Fig. 14 where (1/ln)P(ln) is also
shown. If P(ln)'const, the value of the integral is of th
order of const3(ln,min)

2, whereln,min is the minimum be-
tween these mean free paths. Here again, the propertie
the system are governed by the rare trajectories in which
arithmeticmean free path is small. These trajectories dom
nate the average interaction with the pore walls. Here ag
this is a specific effect of the irregular structure as in
smooth pore the smaller free path is equal to the pore wi

The results given in Fig. 11 suggest a specific behav
for the pumping speed in the Knudsen regime. The proba
ity distribution of the trajectories duration indicates that, f
a long time, the remaining pressure should drop as a po
law of time.

CATALYTIC EFFICIENCY

Since the average collision frequency increases with
irregularity, one can expect that the efficiency of a poro
catalyst will increase with the irregularity. We consider fir
the simple reaction,A→A* ~products! on collision with the
pore wall. There exist two reasons why irregular catalysts
more efficient. First, there is an increase in the total surfa
described here by the factorS. Second, there could exist
specific increase of the catalyst yieldper unit lengthof the
wall if, for a given perimeter, the irregularity increases t
probability of collisions with the wall. For this reason, w
define the specific catalytic efficiencyh as the number of
catalytic reaction events that takes place per unit length~or
equivalently per catalytic site! per unit time@3#.

The catalyst efficiency is then, apart from constant fa
tors, the number of productsA* created per unit timein

ol-

e

re

FIG. 14. The circles represent the distributionP(ln) of the
arithmetic mean free pathln along thenth trajectory for the second
generation of the pore~computer units!. The squares represent th
distribution of P(ln)/ln , which is the integrand for the averag
collision frequency expressed by Eq.~13!.
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steady state. The steady state is a situation where the pr
sure ofA at the pore entrance is constant. Here, it means
each time oneA* product is obtained, anA must be renewed
at the pore entrance. We must then compute first the glo
productionfrequencyover one trajectory, then average ov
all trajectories. To find this quantity, we must take care t
the catalytic event itself is a random process. The catal
process is characterized by the mean numberN0@1 of col-
lisions necessary for an individual reactionA→A* to occur.
The quantity 1/N0 is the reaction probability per collision
With such a constraint, the probabilityPm that the reaction
occurs exactly at them th collision on the wall is equal to

Pm5~1/N0!exp~2m/N0!. ~14!

In that case, the specific efficiency along a trajectoryn can
be written as

hn5$1/Lp,n%(
m

~Pm /Tm,n!, ~15!

whereTm,n is the time spent by the particle in the trajecto
n to reachm collisions. The global catalyst efficiency i
h5^hn&. The simulation results forh are given in Fig. 15.
They indicate that the efficiency increases withS for any
value of the numberN0 of collisions required to obtain a
product. This means that a porous catalyst’s efficiency
pends strongly on its small scale irregularity. It is importa
to note that the increase in the efficiency is independen
N0 . This is only possible if not only the average frequen
but also the collision frequency up to any collision numb
increases with the irregularity. In Fig. 16, we have plott
the averagê f m& of the collision frequencyf m,n5m/Tm,n
‘‘up to m collisions.’’ It can be seen that^ f m& increases with
the irregularity for any value ofm. This indicates that when
one goes from one generation to the next, the addition
small scale structures increases the collision frequency
most of the trajectories. When the reaction probability
very small, such thatN0 is larger than anym that belongs to
the trajectories, the value ofPm is constant and equal t

FIG. 15. Dependence of the specific catalytic efficiencyh on the
irregularity S for different reaction probabilities corresponding
N0510 ~squares!, N05102 ~triangles!, N05104 ~diamonds!, N0

5106 ~crosses!. The efficiency increases withS for any value of the
reaction probability.
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(1/N0), and h5^hn&5$1/Lp,n%^Fn&/N0 . The specific effi-
ciency then reproduces the average frequency, given in
12, divided by the perimeter length.

These results also throw new light on the phenomenon
catalyst poisoning. We consider the case where the ba
energy for a poisonous species B to be trapped from the
phase on an active site is large. In that case, most of
poisonous species are reflected when hitting the surface~In
that situation it is possible that the barrier for desorption
even larger so that the poisonous species is strongly bon
once when it has been trapped!. In the situation of a dilute
poisonous gas, it will be trapped extremely slowly by t
catalyst because the effective rate of trapping is the prod
of two small probabilities. Not only the elementary probab
ity for an individual B to be absorbed on a catalytic cen
may be small but also the probability for the diluted B
follow one of those rare trajectories with largeN is also
small. From this qualitative point of view, the catalyst’s e
ficiency and the poisoning effects may be due to the sa
rare trajectories.

SUMMARY

The statistical properties of ballistic trajectories have be
studied in two-dimensional irregular porous structures. T
probability distribution for the collision numbers, the coll
sion frequencies, trajectory durations or lengths, and the
paths between collisions are described by Le´vy distributions
with exponent nearly equal to22. The irregularity induces a
majority of path lengths smaller than the pore width a
several physical properties have been found to be gove
by the existence of small scale structures in the system
ometry.

The catalytic efficiency in the Knudsen diffusion regim
is found to increase rapidly with the geometrical irregular
of prefractal pores. In the same regime, the macroscopic
fusivity is not modified by the surface roughness.

These results have been obtained for two-dimensional
rous systems and the study should be extended to the
dimension. If the same properties arise in three-dimensio
systems, they could have great practical significance,

FIG. 16. Dependence of the average collision frequency up tm
collisions^ f m& on the irregularityS. Different symbols correspond
to m52 ~circles!, m510 ~squares!, m590 ~triangles!. The collision
frequencies increase with the irregularity.
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cause they show that the catalytic efficiency is controlled
the geometrical irregularity of a porous system indep
dently of the macroscopic transport in the medium.

The fact that the essential results do not depend on
random character of the reflection is an example that
study of deterministic fractals permits one to grasp some
the essential properties of strong geometrical disorder@7#.
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